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1. Introduction 
 

Depth perception is one of the important tasks of a computer vision system. Stereo 
correspondence by calculating the distance of various points in a scene relative to the 
position of a camera allows the performance of complex tasks, such as depth measurements 
and environment reconstruction (Jain et al., 1995). The most common approach for 
extracting depth information from intensity images is by means of a stereo camera setup. 
The point-by-point matching between the two images from the stereo setup derives the 
depth images, or the so called disparity maps, (Faugeras, 1993). The computational 
demanding task of matching can be reduced to a one dimensional search, only by accurately 
rectified stereo pairs in which horizontal scan lines reside on the same epipolar plane, as 
shown in Figure 1. By definition, the epipolar plane is defined by the point P and the two 
camera optical centers OL and OR. This plane POLOR intersects the two image planes at lines 
EP1 and EP2, which are called epipolar lines . Line EP1 is passing through two points: EL and 
PL, and line EP2 is passing through ER and PR respectively. EL and ER are called epipolar 
points and are the intersection points of the baseline OLOR with each of the image planes. 
The computational significance for matching different views is that for a point in the first 
image, its corresponding point in the second image must lie on the epipolar line, and thus 
the search space for a correspondence is reduced from 2 dimensions to 1 dimension. This is 
called the epipolar constraint. The difference on the horizontal coordinates of points PL and 
PR is the disparity. The disparity map consists of all disparity values of the image. Having 
extracted the disparity map, problems such as 3D reconstruction, positioning, mobile robot 
navigation, obstacle avoidance, etc, can be dealt with in a more efficient way (Murray & 
Jennings, 1997; Murray & Little, 2000). 
 

 
Fig. 1. Geometry of epipolar plane 
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Detecting conjugate pairs in stereo images is a challenging research problem known as the 
correspondence problem, i.e. to find for each point in the left image, the corresponding point 
in the right one (Barnard & Thompson, 1980). To determine a conjugate pair, it is necessary 
to measure the similarity of the points. The point to be matched should be distinctly 
different from its surrounding pixels. In order to minimise the number of false 
correspondences in the image pair, several constraints have been imposed. The uniqueness 
constraint (Marr & Poggio, 1979) requires that a given pixel from one image cannot 
correspond to more than one pixel on the other image. In the presence of occluded regions 
within the scene, it may be impossible at all to find a corresponding point. The ordering 
constraint (Baker & Binford, 1981) requires that if a pixel is located to the left of another 
pixel in image, i.e. left image, the corresponding pixels in right image must be ordered in the 
same manner, and vice versa, i.e. ordering of pixels is preserved across the images. The 
ordering constraint may be violated if an object in the scene is located much closer to the 
camera than the background, and one pixel corresponds to a point on the object while the 
other pixel corresponds to a point in the background. Finally , the continuity constraint 
(Marr & Poggio, 1979), which is valid only for scenarios in which smooth surfaces are 
reconstructed, requires that the disparity map should vary smoothly almost everywhere in 
the image. This constraint may be violated at depth discontinuities in the scene. 
Three broad classes of techniques have been used for stereo matching: area-based (Di 
Stefano et al., 2004; Scharstein & Szelinski, 2002), feature-based (Venkateswar & Chellappa, 
1995; Dhond & Aggarwal, 1989), and phase-based (Fleet et al., 1991; Fleet, 1994). Area-based 
algorithms use local pixel intensities as a distance measure and they produce dense 
disparity maps, i.e. process the whole area of the images. An important drawback of area-
based techniques is the fact that uniform depth across a correlation window is assumed, 
which leads to false correspondences near object edges, especially when dealing with large 
windows. A compact framework was introduced by (Hirschmuller, 2001), where instead of 
using a large window several smaller neighbouring windows are used. Only the ones that 
contribute to the overall similarity measure in a consistent manner are taken into account. A 
left-right consistency check is imposed to invalidate uncertain correspondences. Accurate 
depth values at object borders are determined by splitting the corresponding correlation 
windows into two parts, and separately searching on both sides of the object border for the 
optimum similarity measure. These improvements of the classical area-based approach are 
demonstrated by (Hirschmuller, 2001) and in more detail by (Hirschmuller et al., 2002) to 
significantly improve the overall performance of three-dimensional reconstruction. 
On the other hand, feature-based algorithms rely on certain points of interest. These points 
are selected according to appropriate feature detectors. They are more stable towards 
changes in contrast and ambient lighting, since they represent geometric properties of a 
scene. Feature-based stereo techniques allow for simple comparisons between attributes of 
the features being matched, and are hence faster than area-based matching methods. The 
major limitation of all feature-based techniques is that they cannot generate dense disparity 
maps, and hence they often need to be used in conjunction with other techniques. Because of 
the sparse and irregularly distributed nature of the features, the matching results should be 
augmented by an interpolation step if a dense disparity map of the scene is desired. 
Additionally, an extra stage for extensive feature detection in the two images is needed, 
which will increase the computational cost. Thus feature-based methods are not suitable for 
real-time applications.  
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In phase-based techniques the disparity is defined as the shift necessary to align the phase 
value of band-pass filtered versions of two images. In (Fleet et al., 1991) it is shown that 
phase-based methods are robust when there are smooth lighting variations between stereo 
images. It also shows that phase is predominantly linear, and hence reliable approximations 
to disparity can be extracted from phase displacement. 
Real-time stereo vision techniques capable of addressing the stereo vision matching 
problem, producing disparity maps in real-time speeds, are presented in this chapter. While 
these techniques are based on many different approaches to detect similarities between 
image regions, all of them present real-time characteristics along with increased accuracy on 
the computed disparity map. 

 
2. Real-Time Stereo Vision Implementations 
 

Numerous applications require real-time extraction of 3D information. Many researchers 
have been focused in finding the optimum selection of tools and algorithms to obtain 
efficient results. The main characteristics of a real-time stereo vision implementation are the 
produced accuracy of the extracted disparity map, versus the frame rate throughput of such 
a system. There is always a trade off between disparity map accuracy and speed. Most of the 
applications require also a dense output. Software-based techniques cannot easily handle 
such requirements due to the serial behaviour. Real-time dense disparity output requires a 
significant amount of computational resources. Software-based techniques cannot easily 
handle such requirements due to the serial operation. Increasing the image size of the stereo 
pair, or the disparity levels range, can result in a dramatic reduction on the operating 
throughput. Thus, most of the recent research on real-time stereo vision techniques is 
oriented towards the use of a dedicated hardware platform. Hardware devices offer the use 
of parallelism, pipelining and many more design techniques, which result in efficient overall 
operation in image processing, presenting considerably better results compared to serial 
software-based solutions. 

 
2.1 SAD-based Implementations 
SAD-based implementations are the most favourable area-based techniques in real-time 
stereo vision, since they can be straightforwardly implemented in hardware. The 
calculations required in terms of design units are simple, since only summations and 
absolute values are performed. Parallel design units can be utilized in order to handle 
various disparity ranges, in order to reduce the computational time required. Area-based 
methods techniques involve window based operation, where small image windows are 
directly compared along corresponding epipolar lines according to a pixel-based similarity 
measure. Common similarity measures are the cross-correlation coefficient, the sum of 
absolute differences, or the sum of squared differences (Franke & Joos, 2000). Evaluations of 
various techniques using similarity measures are given by (Scharstein & Szelinski 2002; 
Hirscmuller & Scharstein, 2007). The mathematical formula of the SAD similarity measures 
is presented below: 
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where Il and Ir denote the left and right image pixel grayscale values, d is the disparity 
range, w is the window size and i, j are the coordinates (rows, columns) of the center pixel of 
the working window for which the similarity measures are computed. Once the SAD is 
computed for all pixels and for all disparity values, a similarity accumulator has been 
constructed for each pixel, which indicates the most likely disparity. In order to compute the 
disparity map a search in the SAD for all disparity values, (dmin up to dmax), is performed for 
every pixel. At the disparity range, (dmin up to dmax), where the SAD is minimum for a pixel, 
this value is given as the corresponding pixel value for disparity map: 
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The FPGA based architecture along with an off-the-self PCI board by (Niitsuma & 
Maruyama, 2005), uses an SAD-based technique to efficiently calculate optical flow. Dense 
vector maps can be generated by the proposed system at 840 frames per second for a 
320x240, and at 30 frames per second for a 640x480 pixels stereo image pair correspondingly. 
A matching window of 7x7 pixels is used by the area-based technique, along with a 
maximum disparity range of 121 levels. 
The stereo matching architecture presented by (Ambrosch et al., 2009) presents a cost-
efficient hardware pipelined implementation of a real-time stereo vision using an optimised 
technique of the SAD computation. Disparity maps are calculated using 450x375 input 
images and a disparity range of up to 100 pixels at a rate of nearly 600 frames per second. 
Their results show that the device resource usage increases exponentially when increasing 
the desired frame rate. On the other hand, increasing the block size leads to a more linear 
increase of consumed logic elements due to their SAD optimized implementation.  
Another implementation that uses a modified version of the SAD computation is the one 
presented by (Lee et al., 2005). Various versions of SAD algorithms are synthesized by the 
authors to determine resource requirements and performance. By decomposing a SAD correlator 
into column and row SAD calculator using buffers, a saving of around 50% is obtained in terms 
of resource usage of the FPGA device. Additionally, by using different shapes of matching 
windows, rather than rectangular ones, they reduced storage requirements without the expense 
of quality. Disparity maps at the rate of 122 frames per second are produced, for an image pair of 
320x240 pixels spatial resolution, with 64 levels of disparity. 
The FPGA based architecture presented in (Arias-Estrada & Xicotencatl, 2001) is able to produce 
dense disparity maps in real time. The architecture implements a local algorithm based on the 
SAD, aggregated in fixed windows. Parallel processing of the input data is performed by the 
proposed design architecture. An extension to the basic architecture is also proposed in order to 
compute disparity maps on more than 2 images. This method can process 320x240 pixels image 
pairs with 16 disparity levels at speeds reaching 71 frames per second.  
A technique based on adaptive window aggregation method in conjunction with SAD is used 
in (Roh et al., 2004). It can process images of size up to 1024x1024 pixels with 32 disparity 
levels at 47 frames per second. The implemented window-based algorithms present low FPGA 
resource usage, along with noticeable performance in disparity map quality. 
In (Niitsuma & Maruyama, 2004), a compact system for real-time detection of moving 
objects is proposed. Realization of optical flow computation and stereo vision by area-based 
matching on a single FPGA is addressed. By combining those features, moving objects as 
well as distances to the objects, can be efficiently detected. Disparity map computation at a 
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rate of 30 frames per second, for 640x480 pixels images, with 27 disparity levels, is achieved 
by the proposed system. 
Finally, a slightly more complex implementation than the previous ones is proposed in 
(Hariyama et al., 2005). It is based on the SAD using adaptive sized windows. The proposed 
method iteratively refines the matching results by hierarchically reducing the window size. 
The results obtained by the proposed method are 10% better than that of the fixed-window 
method. The architecture is fully parallel and as a result all the pixels and all the windows 
are processed simultaneously. The speed for 64x64 pixel images with 8 bit grayscale 
precision and 64 disparity levels is 30 frames per second. 
The SAD-based hardware implemented stereo vision implementations discussed above are 
summarized in Table 1 below.  
 

Author 
Frame 

rate  
(fps) 

Image Size 
(pixels) 

Disparity 
Range 

Window Size 
(pixels) 

Niitsuma & Maruyama ,2005 840 320×240 121 7×7 
Ambrosch et al., 2009 599 450×375 100 9×9 

Lee et al., 2005 122 320×240 64 16×16 
Arias-Estrada & Xicotencatl, 

2001  71 320×240 16 7×7 

Roh et al., 2004 47 1024x1024 32 16×16 
Niitsuma & Maruyama ,2004 30 640×480 27 7×7 

Hariyama et al., 2005  30 64×64 64 8×8 
Table 1. SAD-based Hardware Implementations 

 
2.2 Phase-based Implementations 
New techniques for stereo disparity estimation have been exhibited, in which disparity is 
expressed in terms of phase differences in the output of local, band-pass filters applied to the left 
and right views (Jenkin & Jepson, 1988; Sanger, 1988; Langley et al., 1990). The main advantage of 
such approaches is that the disparity estimates are obtained with sub-pixel accuracy, without 
requiring explicit sub-pixel signal reconstruction or sub-pixel feature detection and localization. 
The measurements may be used directly, or iteratively as predictions for further, more accurate, 
estimates. Because there are no restrictions to specific values of phase (i.e. zeros) that must first be 
detected and localized, the density of measurements is also expected to be high. Additionally the 
computations may be implemented efficiently in parallel (Fleet et al. 1991). Hardware 
implementation of such algorithms turned out to be much faster than software-based ones. 
The PARTS reconfigurable computer (Woodfill & Herzen, 1991), consists of a 4x4 array of 
mesh-connected FPGAs. A phase algorithm based on the census transform, which mainly 
consists of bitwise comparisons and additions, is proposed. The algorithm reaches 42 frames 
per second for 320x240 pixels image pair, with 24 levels of disparity.  
The method in (Masrani & MacClean, 2006), uses the so-called Local Weighted Phase-
Correlation (LWPC), which combines the robustness of wavelet-based phase-difference 
methods with the basic control strategy of phase-correlation methods. Four FPGAs are used 
to perform image rectification and left-right consistency check to improve the quality of the 
produced disparity map. Real-time speeds reaching 30 frames per second for an image pair 
with 640x480 pixels with 128 levels of disparity. LWPC is also used in (Darabiha et al., 2006). 
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Again four FPGAs are used for the hardware implementation of the algorithm, reaching 30 
frames per second for a 256x360 pixels image pair with 20 disparity levels. 
The phase-based hardware implementations are presented in Table 2 below. 
 

Author Frame rate (fps) Image Size (pixels) Disparity Range 
Woodfill & Herzen, 1991 42 320×240 24 

Masrani & MacClean, 2006 30 640×480 128 
Darabiha et al., 2006 30 256×360 20 

Table 2. Phase-based Hardware Implementations 
 
2.3 Disparity Map Refinement 
The resulting disparity images are usually heavily corrupted. This type of random noise is 
introduced during the disparity value assignment stage. The disparity value assigned to some 
pixels does not correspond to the appropriate value. Hence, in a given window, some pixels 
might have been assigned with the correct disparity value and some others not. This can be 
considered as a type of random noise in the given window. Various standard filtering 
techniques, such as mean, median, Gaussian can not provide efficient refinement (Murino et 
al., 2001). Typical low-pass filters result in loss of detail and do not present adequate false 
matchings removal. Adaptive filtering is also unsuccessful, presenting similar results.  
 
2.3.1 CA Filtering 
Filtering using a cellular automata (CA) approach presents better noise removal with detail 
preservation and extremely easy, simple and parallel hardware implementation (Popovici & 
Popovici, 2002; Rosin, 2005). 
Regarding CA, these are dynamical systems, where space and time are discrete and 
interactions are local and they can easily handle complicated boundary and initial 
conditions (Von Neumann, 1966; Wolfram, 1983). Following, a more formal definition of a 
CA will be presented (Chopard & Droz, 1998). In general, a CA requires: 

1. a regular lattice of cells covering a portion of a d-dimensional space; 

2.  a set         trCtrCtrCtr , ..., ,,,,, m21C  of variables attached to each site 

r  of the lattice giving the local state of each cell at the time t = 0, 1, 2, … ; 

3. a Rule R={R1, R2, …, Rm} which specifies the time evolution of the states  tr,C  in 

the following way: 

           ttrtrtrRtrC qjj ,r ..., ,,,,,,1, 21   CCCC  (3) 

where kr  designate the cells belonging to a given neighborhood of cell r . 
In the above definition, the Rule R is identical for all sites, and it is applied simultaneously 
to each of them, leading to a synchronous dynamics. 
CA have been applied successfully to several image processing applications (Alvarez et al., 
2005; Rosin, 2006; Lafe, 2000). CA are one of the computational structures best suited for a 
VLSI realization (Pries et al., 1986; Sirakoulis, 2004; Sirakoulis et al., 2003). Furthermore, the 
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CA approach is consistent with the modern notion of unified space-time. In computer 
science, space corresponds to memory and time to processing unit. In CA, memory (CA cell 
state) and processing unit (CA local Rule) are inseparably related to a CA cell (Toffoli & 
Margolus, 1987). 
According to the disparity value range, every disparity map image is decomposed into a set 
of d images, where d is the range of the disparity values, a technique similar to, the so-called 
‘threshold decomposition’. Hence for a given image pair with i.e. 16 levels of disparity, 16 
binary images are created, where C1 image has logic ones on every pixel that has value 1 in 
the disparity map, and logic zeros elsewhere. C2 image has ones on every pixel that has 
value 2 in the disparity map, and zeros elsewhere, and so on. The CA rules are applied 
separately on each Cd binary image and the resulting disparity map is further recomposed 
by the following formula: 
 

  ],[,),(),( maxmin ddddjiCjiD d  (4) 
 
The CA rules can be selected in such way that they produce the maximum possible 
performance within the given operating windows. The main effect of this filtering is the 
rejection of a great portion of incorrect matches. 

 
2.3.2 Occlusion and false matching detection 
Occluded areas can also introduce false matches in the disparity map computation. There 
are three main classes of algorithms for handling occlusions: 1) methods that detect 
occlusions (Chang et al, 1991; Fua, 1993), 2) methods that reduce sensitivity to occlusions 
(Bhat & Nayar, 1998; Sara & Bajcsy, 1997), and 3) methods that model the occlusion 
geometry (Belhumeur, 1996; Birchfield & Tomasi, 1998). Considering the first class, left-right 
consistency checking may also be used to detect occlusion boundaries. Computing two 
disparity maps, one based on the correspondence from the left image to the right image, and 
the other based on the correspondence from the right image to the left image, inconsistent 
disparities are assumed to represent occluded regions in the scene. Left-right consistency 
checking is also known as the “two-views constraint”. This technique is well suited to 
remove false correspondences caused by occluded areas within a scene (Fua, 1993). Due to 
its simplicity and overall good performance, this technique was implemented in many real-
time stereo vision systems (Faugeras et al., 1993; Konolige, 1997; Matthies et al., 1995). 
Using the left-right consistency checking, valid disparity values are considered, only those 
that are consistent in both disparity maps, i.e. those that do not lie within occluded areas. A 
pixel that lies within an occluded area will have different disparity value in the left disparity 
map, from its consistent pixel in the right disparity map. For example, a non-occluded pixel 
in the left disparity image must have a unique pixel with equally assigned disparity value in 
the right disparity map according to the following equations:  
 

Dleft-right (i,j) = Dright-left(i,j-d), (d= Dleft-right(i,j))  (5) 
Dright-left (i,j) = Dleft-right(i,j+d), (d= Dright-left(i,j))  (6) 

 
The same applies, for false matched points not exclusively due to occlusions, but due to 
textureless areas or sensor parameter variations. These points are assigned with a false 
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disparity value during the disparity map assignment stage described by equation (2), since 
there might be more than one minimum SAD value for a given pixel, which leads to false 
disparity value assignment for that pixel. Thus, the disparity value assigned to some pixels 
does not correspond to the appropriate correct value. Performing this consistency check, the 
occluded pixel along with the false matched points within the scene can be derived.  

 
3. Hardware Realization 
 

Most of the real-time stereo vision techniques implementation relies on the use of an FPGA 
device. FPGAs provide with high processing rates, which is ideal for speed demanding 
applications. On the other hand, they offer high density designs with low cost demands, 
shorter time-to-market benefits, which enable them in many hardware-based system 
realizations. Compared to an ASIC device, their main advantage is the much lower level of 
NRE (Non-Recurring Engineering) costs, typically associated with ASIC design. 
Additionally, FPGAs provide extensive reconfigurability, since they can be rewired in the 
field to fix bugs, and much simpler design methodology compared to ASIC devices. 
Compared to a processor, their main advantage is the higher processing rate. This is due to 
the fact that FPGAs can customize the resources’ allocation to meet the needs of a specific 
application, whereas processors have fixed functional units.  

 
3.1 SAD-based Disparity Computation with CA post-filtering 
The work by (Georgoulas et al., 2008), presents a hardware-efficient real-time disparity map 
computation system. A modified version of the SAD-based technique is imposed, using an 
adaptive window size for the disparity map computation. A CA filter is introduced to refine 
false correspondences, while preserving the quality and detail of the disparity map. The 
presented hardware provides very good processing speed at the expense of accuracy, with 
very good scalability in terms of disparity levels.  
CA are discrete dynamical systems that can deal efficiently with image enhancement 
operations such as noise filtering (Haykin, 2001). More specifically, the reasons why CA 
filter can be ideally implemented by VLSI techniques are: (1) the CA generating rules have 
the property of native parallel processing; (2) the proposed 2-D CA cell structure with 
programmable additive rules is easily implemented by using AND/OR gates. 
In area-based algorithms the search is performed over a window centered on a pixel. 
However, a major issue is that small windows produce very noisy results, especially for low 
textured areas, whereas large windows fail to preserve image edges and fine detail. Thus, it 
is beneficial to estimate a measure of local variation, in terms of pixel grayscale value, over 
the image using variable sized windows, in order to obtain more efficient disparity map 
evaluation. The measure of a pixel local variation in a support window is a simple statistic 
of the intensity differences between neighboring pixels in the window. 
This first step consists of calculating the local variation of image windows for the reference 
(left) image. Local variation (LV) is calculated according to the following formula: 
  

1 1
( ) ( , ) ,

N N

i j
LV p I i j where average grayscale valueof image window 

 

  
 

(7) 
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where the local variation for a given window central pixel p is calculated according to the 
neighboring pixel grayscale values. N is the selected square window size, in this case, 2 or 5. 
In the case of a 2x2 window the local variation is calculated for the upper left pixel. Initially 
the local variation over a window of 2x2 pixels is calculated and points with smaller local 
variation than a certain threshold value are marked for further processing. The local 
variation over a 5x5 range is computed for the marked points and is then compared to a 
second threshold. Windows presenting smaller variation than the second threshold are 
marked for larger area processing. To obtain optimum results various thresholds 
configurations can be manually selected.  
The overall architecture is realised on a single FPGA device of the Stratix II family of Altera 
devices, with a maximum operating frequency of 256 MHz. Real time disparity maps are 
extracted at a rate of 275 frames per second for a 640x480 pixels resolution image pair with 
80 levels of disparity. The hardware architecture is depicted in Figure 2. The module 
operates in a parallel-pipelined manner. The serpentine memory block is used to 
temporarily store the pixel grayscale values during the processing of the image. The 
serpentine memory block is used to increase processing speed. As the working windows 
move over the image, overlapping pixels exist between adjacent windows. The serpentine 
memory architecture is used to temporarily store overlapping pixels in order to reduce the 
clock cycles needed to load image pixels into the module (Gasteratos et al., 2006). CA 
filtering design is most efficient when implemented in hardware, due to the highly parallel 
independent processing. CA can be designed in a parallel structure, which results in real-
time processing speeds. 
For a disparity range of 80 and a maximum working window of 7x7, on the first scanline of 
the image, after an initial latency period of 602 clock cycles, where the set of registers for the 
right image requires to store 80 overlapping 7x7 working windows, (49+7*79=602), output is 
given every 7 clock cycles. Every time the working window moves to the next scanline, after 
an initial latency of 7 clock cycles which are the only new pixels due to window overlapping 
with the previous scanline, output is given once every clock cycle. By using an FPGA device 
operating at 256MHz for the CA-based approach, a 1Mpixel disparity map can be extracted 
in 11.77 msec, i.e. 85 frames per second. The relationship between the number of frames 
processed per second and the processed image width, assuming square images and a 
disparity range of 80 is presented in Figure 3.  
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Fig. 2. FPGA Design (Georgoulas et al., 2008) 
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Fig. 3. Frame rate output versus image width 

 
3.2 Occlusion-aware Disparity Computation 
In (Georgoulas & Andreadis, 2009) a SAD window based technique using full color RGB 
images as well as an occlusion detection approach to remove false matchings are employed. 
The architecture is based on fully parallel-pipelined blocks in order to achieve maximum 
processing speed. Depending on the required operating disparity range the module can be 
parameterized, to adapt to the given configuration, in order to obtain efficient throughput 
rate. Both from qualitative and quantitative terms, concerning the quality of the produced 
disparity map and the frame rate output of the module, a highly efficient method dealing 
with the stereo correspondence problem is presented.  
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The overall architecture is realised on a single FPGA device of the Stratix IV family of Altera 
devices, with a maximum operating frequency of 511 MHz. Real-time speeds rated up to 768 
frames per second for a 640x480 pixel resolution image pair with 80 disparity levels, are 
achieved, which enable the proposed module for real stereo vision applications. The 
relationship between the number of frames processed per second and the processed image 
size assuming square images, for an operating range of 80 disparity levels, is presented in 
Figure 3. The hardware architecture is shown in Figure 4. 
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Fig. 4. FPGA Design (Georgoulas & Andreadis, 2009) 

 
3.3 FPGA device specifications 
The architectures by (Georgoulas et al., 2008; Georgoulas & Andreadis, 2009) have been 
implemented using Quartus II schematic editor by Altera. Both approaches have been then 
simulated to prove functionality, and once tested, finally mapped on FPGA devices.  
The analytical specifications of the target devices are given in Table 3. As it can be found 
out, space efficiency while maintaining high operating frequencies, is achieved. 
 

Author Device Total 
Registers 

Total ALUTs 
(%) 

Total LABs 
(%) 

Total 
Pins 
(%) 

Georgoulas  
et al., 2008 

Altera 
EP2S180F1
020C3 

5,208 59 
(84,307/143,520) 

83 
(7,484/8,970) 

3 
(25/743) 

Georgoulas 
& 

Andreadis, 
2009 

Altera 
EP4SGX290 
HF35C2 15,442 59 

(143,653/244,160) 
74 

(9,036/12,208) 
10 

(70/660) 

Table 3. Specifications of target devices 
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4. Experimental Results 
 

In (Georgoulas et al., 2008) the disparity map is computed using an adaptive technique 
where the support window for each pixel is selected according to the local variation over it. 
This technique enables less false correspondences during the matching process while 
preserving high image detail in regions with low texture and among edges. The post 
filtering step comprising the CA filter enables satisfactory filtering of any false 
reconstructions in the image, while preserving all the necessary details that comprise the 
disparity map depth values. The resulting disparity maps are presented in Figure 5. 
 

  
(a)                                                  (b) 

Fig. 5. Resulting disparity map for (a) Corridor (b) Cones image pair, respectively 
 

Considering the occlusion-based approach satisfactory improvement in the accuracy of the 
resulting disparity maps is obtained, while preserving all the necessary details of the 
disparity map depth values. The resulting disparity maps are presented in Figure 6 along 
with original image pairs for (a) Tsukuba and (b) Cones. 
 

   
(a) 

   
(b) 

Fig. 6. Resulting disparity map for (a) Tsukuba (b) Cones image pair, respectively 
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Quantitative results under various configurations can be seen in Table 4. The Cov (coverage) 
term, shown in Table 4, states the percentage of the image total pixels, for which a disparity 
value has been assigned. The Acc (accuracy) term states the ratio of the pixels given a correct 
disparity value (as compared with the ground truth) to the total assigned pixels.  
 

Approach  Tsukuba Cones Teddy 
Acc(%) Cov(%) Acc(%) Cov(%) Acc(%) Cov(%) 

Georgoulas et 
al., 2008 

Initial Disparity 
Map 55 88 48 65 90 49 

Refined Disparity 
Map 88 51 72 56 93 47 

Georgoulas & 
Andreadis, 

2009 

Initial Disparity 
Map 94 77 99 80 98 77 

Refined Disparity 
Map 95 91 94 93 92 95 

Table 4. Quantitative results of the proposed module under various configurations 

 
5. Conclusions 
 

The stereo correspondence problem comprises an active wide range of research. Many 
efforts have been made towards efficient solutions to address the various issues of stereo 
matching. As the improvements in computational resources steadily increase, the demand 
for real-time applications is getting compulsory. This chapter focuses on the latest 
improvements in the area of real-time stereo vision.  
Area-based techniques prove to be more appropriate, handling the stereo correspondence 
problem aiming at real-time speeds. Their straightforward implementation in hardware 
enables them suitable in numerous applications such as high-speed tracking and mobile 
robots, object recognition and navigation, biometrics, vision-guided robotics, three-
dimensional modelling and many more. Phase-based techniques also allow for efficient 
realization of such systems, requiring though slightly more complex design methodologies.  
Additionally, it must be noted that there are many other stereo vision techniques that were 
not covered by this work, due to the fact that they are mainly targeted in software-based 
platforms presenting higher processing times, not suitable for real-time operations.   
FPGA implementations handling the stereo matching problem can be a promising 
alternative towards real-time speeds. Their uniqueness relies on their architecture and the 
design methodologies available. Parallel-pipelined processing is able to present great 
computational capabilities, providing with proper scalability opposed to the serial 
behaviour of most software-based techniques. On the other hand considering their 
significantly small volume, low cost, and extensive reconfigurability, they can be oriented 
towards embedded applications where space and power are significant concerns. 
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